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1 Introduction

Fractional calculus is a generalization of regular differentiation and integration to arbitrary

order (non-integer). In latest years, fractional differential equations(FDEs) rise up certainly in

various fields which include rheology, fractals, chaotic dynamics, control theory, signal pro-

cessing, bioengineering and biomedical applications, and many others. Theory of FDEs has

been extensively studied by many authors [5, 3, 7, 6, 8, 12]. Recentely, much attention has

been paid to existence results for the integro-differential equation see [1, 2, 4]. Rassias estab-

lished the Hyers-Ulam stability of linear and nonlinear mapping. This outcome of Rassias

attracted many investigators worldwide who began to be stimulated to investigate the stabil-

ity problems of differential equations [9, 10, 18, 19]. The fractional Ulam stability introduced

by Wang [18, 19] and Ibrahim [13]-[16]. In this work, we investigate the existence, uniqueness

and stability of fractional differential equations involving ψ-Hilfer fractional derivative which

initiated by J. Vanterler da C. Sousa and E. Capelas de Oliveira in [17]. ψ-Hilfer fractional

derivative unifies many fractional derivative and a note on the transformation can be found

in [17].

Consider the integro-differential equation involving ψ-Hilfer fractional derivative of the

form

{

D
α,β;ψ
a+ x(t) = f (t, x(t),

∫ t
a h(t, s, x(s))ds), t ∈ J := (a, b],

I
1−γ;ψ
a+ x(a) = xa, γ = α + β − αβ,

(1.1)

∗Corresponding author. Email: hkkhari1@gmail.com

1



166 International Journal of Mathematics, Statistics and Operations Research

where ρD
α,β;ψ
a+ is ψ-Hilfer fractional derivative of order α and type β and I

1−γ;ψ
a+ is ψ-fractional

integral of order 1 − γ, where f : J × R × R → R h : ∆ × R → R are continuous. Here,

∆ = {(t, s) : a ≤ s ≤ t ≤ b}. For brevity let us take

Hx(t) =
∫ t

a
h(t, s, x(s))ds.

The paper is organized as follows. In section 2, we present notations and definition

used throughout the paper. In Section 3, we discuss the existence and uniqueness results

for integro-differential equation Schauder fixed-point theorem and contraction principle. In

Section 4, four types of Ulam stability, namely Ulam-Hyers stability, generalized Ulam-Hyers

stability, Ulam-Hyers-Rassias and generalized Ulam-Hyers-Rassias stability is discussed.

2 Preliminary

In this section, we recall some definitions and results from fractional calculus. The follow-

ing observations are taken from [6, 11]. Throughout this paper, let C[a, b] a space of continuous

functions from J into R with the norm

�x� = sup {|x(t)| : t ∈ J} .

The weighted space Cγ,ψ[a, b] of functions f on (a, b] is defined by

Cγ,ψ[a, b] =
{

f : (a, b] → R : (ψ(t)− ψ(a))γ f (t) ∈ C[a, b]
}

, 0 ≤ γ < 1,

with the norm

� f �Cγ,ψ
=

∥

∥(ψ(t)− ψ(a))γ f (t)
∥

∥

C[a,b]
= max

t∈J

∣

∣(ψ(t)− ψ(a))γ f (t)
∣

∣ .

The weighted space Cn
γ,ψ[a, b] of functions f on (a, b] is defined by

Cn
γ,ψ[a, b] =

{

f : J → R : f (t) ∈ Cn−1[a, b]; f (t) ∈ Cγ,ψ[a, b]
}

, 0 ≤ γ < 1, 0 ≤ γ < 1

with the norm

� f �Cn
γ,ψ[a,b] =

n−1

∑
k=0

∥

∥

∥
f k
∥

∥

∥

C[a,b]
+ � f n�Cγ,ψ[a,b] .

For n = 0, we have, C0
γ[a, b] = Cγ[a, b].

Definition 2.1. The left-sided fractional integral of a function f with respect to another func-

tion ψ on [a, b] is defined by

(

I
α;ψ
a+

)

f (t) =
1

Γ(α)

∫ t

a
ψ

′
(s) (ψ(t)− ψ(s))α−1 f (s)ds, t > a. (2.1)

Definition 2.2. Let ψ
′
(x) �= 0 (−∞ ≤< t < b < ∞) and α > 0, n ∈ N. The Riemann-

Liouville fractional derivative of a function f with respect to ψ of order α correspondent to

the Riemann-Liouville, is defined by

(

D
α;ψ
a+ f

)

(t) =
1

Γ(n − α)

(

1

ψ
′(t)

d

dt

)n ∫ t

a
ψ

′
(s) (ψ(t)− ψ(s))n−α−1 f (s)ds, (2.2)

where n = [α] + 1.
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Definition 2.3. Let α > 0, n ∈ N, I = [a, b] is the interval (−∞ ≤< t < b < ∞), f , ψ ∈

Cn([a, b], R) two functions such that ψ is increasing and ψ
′
(x) �= 0, for all x ∈ I. The left

ψ-Caputo derivative of f of order α is given by

(

D
α;ψ
a+ f

)

(t) = I
n−α;ψ
a+

(

1

ψ
′(t)

d

dt

)n

f (t) (2.3)

where n = [α] + 1 for α /∈ N and α = n for α ∈ N.

Definition 2.4. The ψ-Hilfer fractional derivative of function f oforder α is given by,

D
α,β;ψ
a+ f (t) = I

β(1−α);ψ
a+

(

1

ψ
′(t)

d

dt

)

I
(1−β)(1−α);ψ
a+ f (t). (2.4)

The ψ-Hilfer fractional derivative as above defined, can be written in the following

D
α,β;ψ
a+ f (t) = I

γ−α;ψ
a+ D

γ;ψ
a+ f (t).

Lemma 2.5. Let α, β > 0, Then we have the following semigroup property

(I
α;ψ
a+ I

β;ψ
a+ f )(t) = (I

α+β;ψ
a+ )(t),

and

(D
α;ψ
a+ I

α;ψ
a+ f )(t) = f (t).

Lemma 2.6. Let α, β > 0, and

1. If f (x) = (ψ(t)ψ(a))β−1, then

I
α;ψ
a+ (ψ(t)− ψ(a))β−1 (t) =

Γ(β)

(α + β)
(ψ(t)− ψ(a))α+β−1 .

2. If g(x) = (ψ(t)ψ(a))α−1, then

D
α;ψ
a+ (ψ(t)− ψ(a))α−1 (t) = 0.

Lemma 2.7. Let 0 < α < 1. If f ∈ Cn[a, b], then

(

I
α;ψ
a+ D

α;ψ
a+

)

(t) = f (t)−

(

I
1−α;ψ
a+ f

)

(a)

Γ(α)
(ψ(t)− ψ(a))α−1 ,

for all x ∈ (a, b].

Lemma 2.8. Let n − 1 ≤ γ < n and f ∈ Cγ[a, b]. Then
(

I
α;ψ
a+ f

)

(a) = lim
t→a+

(

I
α;ψ
a+

)

f (t) = 0.

Here we present the following weighted space as follows

C
α,β
1−γ;ψ[a, b] =

{

f ∈ C1−γ;ψ[a, b], D
α,β;ψ
a+ f ∈ Cγ;ψ[a, b]

}

and

C
γ
1−γ;ψ[a, b] =

{

f ∈ C1−γ;ψ[a, b], D
γ;ψ
a+ f ∈ C1−γ;ψ[a, b]

}

.

It is obvious that

C
γ
1−γ;ψ[a, b] ⊂ C

α,β
1−γ;ψ[a, b].

3
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Lemma 2.9. Let 0 < α < 1, 0 ≤ β ≤ 1 and γ = α + β − αβ. If C
γ
1−γ,ψ[a, b], then

I
γ;ψ
a+ D

γ;ψ
a+ f = I

α;ψ
a+ D

α,β;ψ
a+ f (2.5)

and

D
γ;ψ
a+ I

α;ψ
a+ f = D

β(1−α);ψ
a+ f . (2.6)

Lemma 2.10. Let f ∈ L1(a, b). If D
β(1−α);ψ
a+ f exists on L1(a, b), then

D
α,β;ψ
a+ I

α;ψ
a+ f = I

β(1−α);ψ
a+ D

β(1−α);ψ
a+ f .

Lemma 2.11. Let f ∈ C1[a, b], α > 0 and 0 ≤ β ≤ 1, we have

D
α,β;ψ
a+ I

α;ψ
a+ f = f .

Lemma 2.12. Suppose α > 0, a(t) is a nonnegative function locally integrable on a ≤ t < b (some

b ≤ ∞), and let g(t) be a nonnegative, nondecreasing continuous function defined on a ≤ t < b, such

that g(t) ≤ K for some constant K. Further let x(t) be a nonnegative locally integrable on a ≤ t < b

function with

|x(t)| ≤ a(t) + g(t)
∫ t

a
ψ

′
(s) (ψ(t)− ψ(s))α−1 x(s)ds, t ∈ J

with some α > 0. Then

|x(t)| ≤ a(t) +
∫ t

a

[

∞

∑
n=1

(g(t)Γ(α))n

Γ(nα)
ψ

′
(s) (ψ(t)− ψ(s))nα−1

]

x(s)ds, a ≤ t < b.

Proof. The proof is similar to Theorem 1 in [20].

Lemma 2.13. Let γ = α + β − αβ, where 0 < α < 1 and 0 ≤ β ≤ 1. If f : J × R × R → R is

a function such that f (·, x(·)) ∈ C1−γ[a, b] for all x ∈ C1−γ[a, b]. A function x ∈ C
γ
1−γ[a, b] is the

solution of fractional initial value problem

{

D
α,β;ψ
a+ x(t) = f (t, x(t), Hx(t)), 0 < α < 1, 0 ≤ β ≤ 1,

I
1−γ;ψ
a+ x(a) = xa,

if and only if x satisfies the following Volterra integral equation

x(t) =
xa

Γ(γ)
(ψ(t)− ψ(a))γ−1 +

1

Γ(α)

∫ t

a
(ψ(t)− ψ(s))α−1 f (s, x(s), Hx(s))ds. (2.7)

3 Existence and uniqueness

We make the following hypotheses to prove our main results.

(H1) Let f : J × R → R be a function such that f (·, x(·)) ∈ C1−γ,ψ[J, R] for any x ∈ C1−γ[J, R].

For all x, y ∈ R, there exists a positive constant L > 0 such that

| f (t, x)− f (t, y)| ≤ L |x − y| .

4
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(H2) : Let h : ∆ × R → R be continuous and there exists a constant H > 0, such that

∫ t

0
|h(t, s, x)− h(t, s, y)| ≤ H |x − y| .

(H3) Let f : J × R → R a function and there exists a constant M, N such that

| f (t, x)| ≤ M |x|+ N, ∀ t ∈ J, x ∈ R.

Theorem 3.1. Assume that [H1] and [H2] are satisfied. Then, (1.1) has at least one solution.

Proof. Consider the operator N : C1−γ,ψ[a, b] → C1−γ,ψ[a, b]. The equivalent integral equation

(2.7) which can be written in the operator form

x(t) = Nx(t)

where

(Nx)(t) =
xa

Γ(γ)
(ψ(t)− ψ(a))γ−1 +

1

Γ(α)

∫ t

a
ψ

′
(s) (ψ(t)− ψ(s))α−1 f (s, x(s), Hx(s))ds. (3.1)

Consider the ball

Br =
{

x ∈ C1−γ,ψ[a, b] : �x� ≤ r
}

It is obvious that the operator N is well defined. Clearly, the fixed points of the operator N

are solutions of the problem. For any x ∈ C1−γ,ψ[a, b] and each t ∈ J we have,

∣

∣

∣
(Nx)(t) (ψ(t)− ψ(a))1−γ

∣

∣

∣

=

∣

∣

∣

∣

xa

Γ(γ)
+

1

Γ(α)
(ψ(t)− ψ(a))1−γ

∫ t

a
ψ

′
(s) (ψ(t)− ψ(s))α−1 f (s, x(s), Hx(s))ds

∣

∣

∣

∣

≤
xa

Γ(γ)
+

1

Γ(α)
(ψ(t)− ψ(a))1−γ

∫ t

a
ψ

′
(s) (ψ(t)− ψ(s))α−1 | f (s, x(s))| ds

≤
xa

Γ(γ)
+

1

Γ(α)
(ψ(t)− ψ(a))1−γ

∫ t

a
ψ

′
(s) (ψ(t)− ψ(a))α−1 (M |x(s)|+ N) ds

≤
xa

Γ(γ)
+

M

Γ(α)
(ψ(t)− ψ(a))1−γ (ψ(t)− ψ(a))α+γ−1 B(γ, α) �x�C1−γ,ψ

+
N

Γ(α + 1)
(ψ(t)− ψ(a))1−γ (ψ(t)− ψ(a))α

≤
xa

Γ(γ)
+

1

Γ(α)
(ψ(b)− ψ(a))α B(γ, α) �x�C1−γ,ψ

+
N

Γ(α + 1)
(ψ(b)− ψ(a))α+1−γ .

This proves that N transforms the ball Br =
{

x ∈ C1−γ,ψ[a, b] : �x�C1−γ,ψ
≤ r

}

into itself.

The proof is divided into several steps.

Step 1: The operator N is continuous.

5



170 International Journal of Mathematics, Statistics and Operations Research

Let xn be a sequence such that xn → x in C1−γ,ψ[a, b]. Then for each t ∈ J,

∣

∣

∣
((Nxn)(t)− (Nx)(t)) (ψ(t)− ψ(a))1−γ

∣

∣

∣

≤

∣

∣

∣

∣

∣

(ψ(t)− ψ(a))1−γ

Γ(α)

∫ t

a
ψ

′
(s) (ψ(t)− ψ(s))α−1 f (s, xn(s), Hxn(s))ds

−
(ψ(t)− ψ(a))

Γ(α)

∫ t

a
ψ

′
(s) (ψ(t)− ψ(s))α−1 f (s, x(s), Hx(s))ds

∣

∣

∣

∣

≤
(ψ(t)− ψ(a))1−γ

Γ(α)

∫ t

a
ψ

′
(s) (ψ(t)− ψ(s))α−1 | f (s, xn(s), Hxn(s))− f (s, x(s), Hx(s))| ds

≤
(ψ(t)− ψ(a))1−γ

Γ(α)
(ψ(t)− ψ(a))α+γ−1 B(γ, α) � f (·, xn(·), Hxn(·))− f (·, x(·), Hx(·))�C1−γ,ψ

,

which implies

�Nxn − Nx�C1−γ,ψ
≤ B(γ, α)

(ψ(b)− ψ(a))α

Γ(α)
� f (·, xn(·), Hxn(·))− f (·, x(·), Hx(·))�C1−γ,ψ

.

It implies that N is continuous.

Step 2: N(Br) is uniformly bounded.

It is clear that N(Br) ⊂ Br is bounded.

Step 3: N(Br) is relatively compact.

It follows from N(Br) ⊂ Br that N(Br) is uniformly boundeed. Moreover, to show that N is

an equicontinuous operator. Let t1, t2 ∈ J, t1 < t2, Br be a bounded set of C1−γ,ρ[a, b]. Then,

|((Nx)(t1)− (Nx)(t2))|

≤
xa

Γ(γ)

∣

∣

∣(ψ(t1)− ψ(a))γ−1 − (ψ(t2)− ψ(a))γ−1
∣

∣

∣

+
B(γ, α)

Γ(α)

(

(ψ(t1)− ψ(a))α+γ−1 − (ψ(t2)− ψ(a))α+γ−1
)

� f �C1−γ,ψ

As t1 → t2, the right hand side of the above inequality tends to zero. As a consequence of

claim 1 to 3, together with Arzela-Ascoli theorem, we can conclude that N : C1−γ,ψ[a, b] →

C1−γ,ψ[a, b] is continuous and completely continuous.

Theorem 3.2. Assume that hypothesis (H1) is fulfilled. If

L(1 + H)

Γ(α)
B(γ.α) (ψ(b)− ψ(a))α

< 1

then, Eq. (1.1) has unique solution.

4 Stability Analysis

Next, we shall give the definitions and the criteria of Ulam-Hyers stability and Ulam-Hyers-

Rassias stability for impulsive fractional differential Eq.(1.1). Let ǫ > 0 be a positive real

number and ϕ : J → R+ be a continuous function. We consider the following inequalities

6
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∣

∣

∣
D

α,β;ψ
a+ z(t)− f (t, z(t), Hz(t))

∣

∣

∣
≤ ǫ, t ∈ J, (4.1)

∣

∣

∣
D

α,β;ψ
a+ z(t)− f (t, z(t), Hz(t))

∣

∣

∣
≤ ǫϕ(t), t ∈ J, (4.2)

∣

∣

∣
D

α,β;ψ
a+ z(t)− f (t, z(t), Hz(t))

∣

∣

∣
≤ ϕ(t), t ∈ J. (4.3)

Definition 4.1. The Eq. (1.1) is Ulam-Hyers stable if there exists a real number Cf > 0 such

that for each ǫ > 0 and for each solution z ∈ C1−γ,ψ[a, b] of the inequality (4.1) there exists a

solution x ∈ C1−γ,ψ[a, b] of Eq. (1.1) with

|z(t)− x(t)| ≤ Cf ǫ, t ∈ J.

Definition 4.2. The Eq. (1.1) is generalized Ulam-Hyers stable if there exist ϕ ∈ C1−γ,ψ[a, b],

ϕ f (0) = 0 such that for each solution z ∈ C1−γ,ψ[a, b] of the inequality (4.1) there exists a

solution x ∈ C1−γ,ψ[a, b] of Eq. (1.1) with

|z(t)− x(t)| ≤ ϕ f ǫ, t ∈ J.

Definition 4.3. The Eq. (1.1) is Ulam-Hyers-Rassias stable with respect to ϕ ∈ C1−γ,ψ[a, b]

if there exists a real number Cf ,ϕ > 0 such that for each ǫ > 0 and for each solution z ∈

C1−γ,ψ[a, b] of the inequality (4.2) there exists a solution x ∈ C1−γ,ψ[a, b] of Eq. (1.1) with

|z(t)− x(t)| ≤ Cf ,ϕ ǫϕ(t), t ∈ J.

Definition 4.4. The Eq. (1.1) is generalized Ulam-Hyers-Rassias stable with respect to ϕ ∈

C1−γ,ψ[a, b] if there exists a real number Cf ,ϕ > 0 such that for each solution z ∈ C1−γ,ψ[a, b] of

the inequality (4.3) there exists a solution x ∈ C1−γ,ψ[a, b] of Eq. (1.1) with

|z(t)− x(t)| ≤ Cf ,ϕ ϕ(t), t ∈ J.

Remark 4.5. Clearly,

1. Definition 4.1 ⇒ Definition 4.2.

2. Definition 4.3 ⇒ Definition 4.4.

3. Definition 4.3 for ϕ(t) = 1 ⇒ Definition 4.1

Remark 4.6. A function z ∈ C1−γ,ψ[a, b] is a solution of the inequality (4.1) if and only if there

exists a function g ∈ C1−γ,ψ[a, b] such that

∣

∣

∣
D

α,β;ψ
a+ z(t)− f (t, z(t), Hz(t))

∣

∣

∣
≤ ǫ, t ∈ J,

if and only if there exist a function g ∈ C1−γ,ψ[a, b] such that

(i) |g(t)| ≤ ǫ, t ∈ J.

(ii) D
α,β;ψ
a+ z(t) = f (t, z(t), Hz(t)) + g(t), t ∈ J.

One can have similar remarks for the inequalities (4.2) and (4.3).

7
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Remark 4.7. Let 0 < α < 1, if z is solution of the inequality (4.1) then z is a solution of the

following integral inequality

∣

∣

∣

∣

z(t)−
za

Γ(γ)
(ψ(t)− ψ(a))γ−1 −

1

Γ(α)

∫ t

a
ψ

′
(s) (ψ(t)− ψ(s))α−1 ( f (s, z(s), Hz(s))ds

∣

∣

∣

∣

≤ ǫ
(ψ(t)− ψ(a))α

Γ(α + 1)
.

Indeed, by Remark 4.6 we have that

D
α,β;ψ
a+ z(t) = f (t, z(t), Hz(t)) + g(t), t ∈ J.

Then

z(t) =
za

Γ(γ)
(ψ(t)− ψ(a))γ−1 +

1

Γ(α)

∫ t

a
ψ

′
(s) (ψ(t)− ψ(s))α−1 ( f (s, z(s), Hz(s)) + g(s)) ds.

From this it follows that
∣

∣

∣

∣

z(t)−
za

Γ(γ)
(ψ(t)− ψ(a))γ−1 −

1

Γ(α)

∫ t

a
ψ

′
(s) (ψ(t)− ψ(s))α−1 ( f (s, z(s), Hz(s))ds

∣

∣

∣

∣

=

∣

∣

∣

∣

1

Γ(α)

∫ t

a
ψ

′
(s) (ψ(t)− ψ(s))α−1 g(s)ds

∣

∣

∣

∣

≤
1

Γ(α)

∫ t

a
ψ

′
(s) (ψ(t)− ψ(s))α−1 |g(s)| ds

≤ ǫ
(ψ(t)− ψ(a))α

Γ(α + 1)
.

We have similar remarks for the inequality (4.2) and (4.3).

Now, we give the main results, generalised Ulam-Hyers-Rassias stable results, in this section.

[H3]: There exists an increasing finctions ϕ ∈ C1−γ,ρ[a, b] and there exists λϕ > 0 such that

for any t ∈ J

I
α;ψ
a+ ϕ(t) ≤ λϕ ϕ(t).

Theorem 4.8. The hypothesis [H1] and [H3] holds. Then Eq.(1.1) is generalised Ulam-Hyers-Rassias

stable.

Proof. Let z be solution of 4.3 and by Theorem 3.2 there x is unique solution of the problem

D
α,β;ψ
a+ x(t) = f (t, x(t), Hz(t)), t ∈ J,

I
1−γ;ψ
a+ x(a) = I

1−γ;ψ
a+ z(a).

Then we have

x(t) =
za

Γ(α)
(ψ(t)− ψ(a))γ−1 +

1

Γ(α)

∫ t

a
ψ

′
(s) (ψ(t)− ψ(s))α−1 f (s, x(s), Hx(s))ds.

By differentiating inequality (4.3), we have

∣

∣

∣

∣

z(t)−
za

Γ(α)
(ψ(t)− ψ(a))γ−1 −

1

Γ(α)

∫ t

a
ψ

′
(s) (ψ(t)− ψ(s))α−1 f (s, z(s), Hz(s))ds

∣

∣

∣

∣

≤ λϕ ϕ(t).

8
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Hence it follows

|z(t)− x(t)| ≤

∣

∣

∣

∣

z(t)−
za

Γ(α)
(ψ(t)− ψ(a))γ−1 −

1

Γ(α)

∫ t

a
ψ

′
(s) (ψ(t)− ψ(s))α−1 f (s, x(s), Hx(s))ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

z(t)−
za

Γ(α)
(ψ(t)− ψ(a))γ−1 −

1

Γ(α)

∫ t

a
ψ

′
(s) (ψ(t)− ψ(s))α−1 f (s, z(s), Hz(s))ds

∣

∣

∣

∣

+

∣

∣

∣

∣

1

Γ(α)

∫ t

a
ψ

′
(s) (ψ(t)− ψ(s))α−1 f (s, z(s), Hz(s))ds

−
1

Γ(α)

∫ t

a
ψ

′
(s) (ψ(t)− ψ(s))α−1 f (s, x(s), Hx(s))ds

∣

∣

∣

∣

≤ λϕ ϕ(t) +
L(1 + H)

Γ(α)

∫ t

a
(ψ(t)− ψ(s))α−1 |z(s)− x(s)| ds.

By Lemma 2.5, there exists a constant M∗
> 0 independent of λϕ ϕ(t) such that

|z(t)− x(t)| ≤ M∗λϕ ϕ(t) := Cf ,ϕ ϕ(t).

Thus, Eq.(1.1) is generalized Ulam-Hyers-Rassias stable.

Remark 4.9. (i) Under the assumption of Theorem 4.8, we consider (1.1) and the inequality

(4.2). One can repeat the same process to verify that Eq.(1.1) is Ulam-Hyers-Rassias

stable.

(ii) Under the assumption of Theorem 4.8, we consider (1.1) and the inequality (4.1). One

can repeat the same process to verify that Eq.(1.1) is Ulam-Hyers stable.
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