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1 Introduction

Fractional calculus is a generalization of regular differentiation and integration to arbitrary
order (non-integer). In latest years, fractional differential equations(FDEs) rise up certainly in
various fields which include rheology, fractals, chaotic dynamics, control theory, signal pro-
cessing, bioengineering and biomedical applications, and many others. Theory of FDEs has
been extensively studied by many authors [5, 3, 7, 6, 8, 12]. Recentely, much attention has
been paid to existence results for the integro-differential equation see [1, 2, 4]. Rassias estab-
lished the Hyers-Ulam stability of linear and nonlinear mapping. This outcome of Rassias
attracted many investigators worldwide who began to be stimulated to investigate the stabil-
ity problems of differential equations [9, 10, 18, 19]. The fractional Ulam stability introduced
by Wang [18, 19] and Ibrahim [13]-[16]. In this work, we investigate the existence, uniqueness
and stability of fractional differential equations involving ¢-Hilfer fractional derivative which
initiated by ]. Vanterler da C. Sousa and E. Capelas de Oliveira in [17]. @-Hilfer fractional
derivative unifies many fractional derivative and a note on the transformation can be found
in [17].

Consider the integro-differential equation involving y-Hilfer fractional derivative of the
form

{Di"f””X(t) = f(t,x(t), [, h(t,s,x(s))ds), t€]:=(a,b], (1.1)

I;:wpx(a) =X, Y=a+p—uap,
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where PDZ’f ¥ is y-Hilfer fractional derivative of order a and type B and I;;W) is y-fractional

integral of order 1 — v, where f : [ X RxR — R h : Ax R — R are continuous. Here,
A = {(t,;s) :a <s <t <Db}. For brevity let us take

Hx(t) = /ath(t, s, x(s))ds.

The paper is organized as follows. In section 2, we present notations and definition
used throughout the paper. In Section 3, we discuss the existence and uniqueness results
for integro-differential equation Schauder fixed-point theorem and contraction principle. In
Section 4, four types of Ulam stability, namely Ulam-Hyers stability, generalized Ulam-Hyers
stability, Ulam-Hyers-Rassias and generalized Ulam-Hyers-Rassias stability is discussed.

2 Preliminary

In this section, we recall some definitions and results from fractional calculus. The follow-
ing observations are taken from [6, 11]. Throughout this paper, let C[a, b] a space of continuous
functions from | into R with the norm

x|l = sup {|x(5)] - £ € ]}
The weighted space C,,y[a,b] of functions f on (a, b] is defined by
Cryla bl = {f: (a,b] = R: (p(t) —¢(a))" f(t) € Cla,b]},0 <y <1,

with the norm

1lle,, = 1100 = 9(@)" F(B)ll¢(qy = max| (w(t) — (@) £(1)]

te]

The weighted space CJj ,[a, b] of functions f on (a,b] is defined by

Cryla bl = {f:] = R:f(t) € C" b f(t) € Crylab]} 0< 7 <1,0< 7 <1
with the norm

n—1
et = 2o [ g+ 1 et

For n = 0, we have, C3[a,b] = C,[a, b].

Definition 2.1. The left-sided fractional integral of a function f with respect to another func-
tion 1 on [a, b] is defined by

(1) £0) = g7 [ #6) (0 =90 F(0)s, £ @

Definition 2.2. Let ¢ (x) # 0 (—c0 << t < b < o) and « > 0, n € N. The Riemann-
Liouville fractional derivative of a function f with respect to 1 of order a correspondent to
the Riemann-Liouville, is defined by

(D) ) =

where n = [a] + 1.

1
n—«

) (w’l(t) i)n /ut lpl(s) (IIJ(t) — l/)(s))”*tx71 f(S)dS, 22)
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Definition 2.3. Let « > 0, n € N, I = [a,b] is the interval (-0 << t < b < o), f,9p €
C"([a,b], R) two functions such that ¢ is increasing and ¢'(x) # 0, for all x € I. The left
y-Caputo derivative of f of order a is given by

(D7) () =17 (s ) 0 3)

where n = [a] + 1 fora ¢ N and « = n for « € N.

Definition 2.4. The y-Hilfer fractional derivative of function f oforder « is given by,

D F() = 120 () 1) 4

The y-Hilfer fractional derivative as above defined, can be written in the following
DYV F(t) = 117D £(8).
Lemma 2.5. Let o, B > 0, Then we have the following semigroup property
LX) = (1P @),
and
(DL F)(1) = F(b).

Lemma 2.6. Let o, f > 0, and

L If f(x) = (p(£)p(a))P ", then
I (p(e) — (@) (1) = 2P ((e) — p(a)) =B

2. If g(x) = (9(D)p(a))* ™", then
Dy (9(t) = 9(@)" " (1) = 0.

Lemma 2.7. Let 0 < o < 1. If f € Cn|a, b], then

1 a;yp
(12 D3) (1) = f(t) - <r(f)>() ((t) = (@),

forall x € (a,b].
Lemma 2.8. Let n —1 <y < nand f € Cy[a,b]. Then

(57f) (@) = lim (1) () = 0.

Here we present the following weighted space as follows

Y plab] = {f € Croqyla b, DYPf € Crylab]}
and
CY_pla bl = {f € C1_yyla b, DI¥f € Cr_yla,b]}
It is obvious that
]yl bl c CP a0,
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Lemma29. Let 0 <a <1,0<B<landy=a+p—aB. IfC]_ ,pla,b], then

DIV f = 1Dy f (2.5)
and

DI LY f = DIy, (2.6)

Lemma 2.10. Let f € L'(a,b). Ifof‘“”*"f exists on L'(a,b), then
“ﬁlﬁlﬂélﬁf B« lPDﬁ(l a)itp vy,
Lemma 2.11. Let f € Cl{a,b], a > 0and 0 < B < 1, we have
D" /5 1/’1”‘ ‘/’f f.

Lemma 2.12. Suppose « > 0, a(t) is a nonnegative function locally integrable on a < t < b (some
b < o0), and let g(t) be a nonnegative, nondecreasing continuous function defined on a < t < b, such
that g(t) < K for some constant K. Further let x(t) be a nonnegative locally integrable on a < t < b
function with

(0] < a(t)+8(0) [ 4/(5) () — 9() " x(6)ds, tE ]

with some o > 0. Then

Kol <a(t)+ [

Proof. The proof is similar to Theorem 1 in [20]. O

iwlp’(s) () — p(s))™ | x(s)ds, a<t<b.

Lemma 2.13. Let v = a + B —ap, where 0 < a < 1and0 < B <1 Iff: JxRxR — Ris
a function such that f(-,x(-)) € Ci_,[a,b] for all x € Cy_,[a,b]. A function x € Cffv[a, b] is the
solution of fractional initial value problem

1
IMW’ (a) = x,,

{ DyPPx(t) = f(t,x(t), Hx(t)), 0 < e <1, 0< B <1,
if and only if x satisfies the following Volterra integral equation

((t) = ()" + r(la) / () — 9 S5 x(s), He(s)ds. @27)

3 Existence and uniqueness

We make the following hypotheses to prove our main results.

(H1) Let f: ] x R — R be a function such that f(-,x(-)) € Ci_,[J,R] for any x € C;_,[], R].
For all x,y € R, there exists a positive constant L > 0 such that

(8 x) = f(Ly)] < Llx—yl.
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(H2) : Let h : A X R — R be continuous and there exists a constant H > 0, such that
t
| nttss,2) = ht,s,y)| < Hlx =y
0

(H3) Let f : ] x R — R a function and there exists a constant M, N such that

If(t,x)| <M|x|+N,Vte], xeR

Theorem 3.1. Assume that [H1] and [H2] are satisfied. Then, (1.1) has at least one solution.

Proof. Consider the operator N : Cy_, y[a,b] = Ci_, y[a,b]. The equivalent integral equation
(2.7) which can be written in the operator form

x(t) = Nx(t)

where

(N)(®) = 5005 @O = 9(@)" + 5155 / W) (90) — 9()" 1 (s, x(s), Hixls))ds. (31
Consider the ball
By = {x € Cryylab]: x| <}

It is obvious that the operator N is well defined. Clearly, the fixed points of the operator N
are solutions of the problem. For any x € C;_, y[a,b] and each t € | we have,

= | s ) - ) [ 9/(6) ((6) — 9(9)" s, x(5), Hix(s))ds
< s+ g (00— 9(@) 45 (0) — 9()" " f (s x(6))] ds

= rJ(C;) + r(la) (W) = 9@)™" | () () = (@) (M]x(s)| + N) ds

< s+ Fag (00 = 9(@) 7 (90 = 9(@) T Bl el

+ Fam (0 — 9@ ()~ y(a)’

< Fs + Fag (00 = 9(@)* B ¥l + frars ($0) — (@)™

This proves that N transforms the ball B, = {x € Cr_qyla,b] : x| Croyy = r} into itself.

The proof is divided into several steps.
Step 1: The operator N is continuous.
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Let x, be a sequence such that x, — x in C;_, y[a,b]. Then for each t € ],

‘((an)(f) — (Nx)()) (p(t) — ¢(a))1—v‘

< | PO 1) () 060" Fls 309, Hn )

I [ ) (w0 = 9™ s, x(5), Ha(s))ds
<O BTy () — 061 05,2009, Hn(s) — Fs (5, Hs)) s
<) ;(";g””” (90 = (@)™ Bl @) £ (), Hxa () = £ x(), He(Dlley_

which implies

19
I~ Nl ,, < B OO 70, () = 030, HA O,y
It implies that N is continuous.

Step 2: N(B,) is uniformly bounded.

It is clear that N(B,) C B, is bounded.

Step 3: N(B;) is relatively compact.

It follows from N(B,) C B, that N(B,) is uniformly boundeed. Moreover, to show that N is
an equicontinuous operator. Let t1,t, € J,t; < t2, B, be a bounded set of C;_,, [a,b]. Then,

(N3 (1) — (N ()
Xg - B

< o) @) = ) — y(@)

+ BI(’Z;()X) <(‘/’(f1) — (a))" 7 = (p(ta) — 1/’(””“”71) Iflle...,

As t; — t, the right hand side of the above inequality tends to zero. As a consequence of
claim 1 to 3, together with Arzela-Ascoli theorem, we can conclude that N : Cy_, y[a,b] —
Ci—q,p[a,b] is continuous and completely continuous.

O

Theorem 3.2. Assume that hypothesis (H1) is fulfilled. If

WBW) ((b) — p(a)* < 1

then, Eq. (1.1) has unique solution.

4 Stability Analysis

Next, we shall give the definitions and the criteria of Ulam-Hyers stability and Ulam-Hyers-
Rassias stability for impulsive fractional differential Eq.(1.1). Let € > 0 be a positive real
number and ¢ : | — R™ be a continuous function. We consider the following inequalities
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‘D“W £ — f(t,z(t),Hz(t))‘ge, te], (4.1)
[DE2(t) — f(t,2(t), Ha(t)| < eg(), te ], “2)
‘D“W | — f(t,z(t),Hz(t))]ggo(t), te. (4.3)

Definition 4.1. The Eq. (1.1) is Ulam-Hyers stable if there exists a real number C; > 0 such
that for each € > 0 and for each solution z € C;_, y[a, b] of the inequality (4.1) there exists a
solution x € C;_, y[a, b] of Eq. (1.1) with

z(t) —x(t)] < Cre, te].

Definition 4.2. The Eq. (1.1) is generalized Ulam-Hyers stable if there exist ¢ € Ci_,y[a,b],
@£(0) = 0 such that for each solution z € C;_, y[a,b] of the inequality (4.1) there exists a
solution x € C;_, y[a, b] of Eq. (1.1) with

lz(t) — x(t)]| < pre, teq.

Definition 4.3. The Eq. (1.1) is Ulam-Hyers-Rassias stable with respect to ¢ € Ci_, y[a,b]
if there exists a real number Cy, > 0 such that for each € > 0 and for each solution z €
C1-q,pla, b] of the inequality (4.2) there exists a solution x € C;_, y[a, b] of Eq. (1.1) with

z(t) —x(t)| < Crpep(t), te].

Definition 4.4. The Eq. (1.1) is generalized Ulam-Hyers-Rassias stable with respect to ¢ €
C1-,y[a, b] if there exists a real number C¢,, > 0 such that for each solution z € C;_ y[a, b] of
the inequality (4.3) there exists a solution x € Cy_ y[a, b] of Eq. (1.1) with

|2() —x(t)] < Crpp(t), te].

Remark 4.5. Clearly,

1. Definition 4.1 = Definition 4.2.

2. Definition 4.3 = Definition 4.4.

3. Definition 4.3 for ¢(t) = 1 = Definition 4.1

Remark 4.6. A function z € C;_, y[a, b] is a solution of the inequality (4.1) if and only if there
exists a function g € C;_, y[a, b] such that

DyPz(t) — f(t2(1), Hz(1)| < e, te],
if and only if there exist a function g € Cy_ y(a, b] such that
(i) |g(t)] <ete].
(i) DaPz(t) = f(t,2(t), Hz(t)) + g(t), t € .

One can have similar remarks for the inequalities (4.2) and (4.3).
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Remark 4.7. Let 0 < a < 1, if z is solution of the inequality (4.1) then z is a solution of the
following integral inequality

2(0) — 25 (90— @) = s [ 6 (00— 960 (F206) () s < e LD L

Indeed, by Remark 4.6 we have that

DyPz(t) = f(t,2(t), Hz(t)) + g(t), t € ].

We have similar remarks for the inequality (4.2) and (4.3).
Now, we give the main results, generalised Ulam-Hyers-Rassias stable results, in this section.

[H3]: There exists an increasing finctions ¢ € Cy_,[a, b] and there exists A, > 0 such that
forany t € |

LY o(t) < App(t).

Theorem 4.8. The hypothesis [H1] and [H3] holds. Then Eq.(1.1) is generalised Ulam-Hyers-Rassias
stable.

Proof. Let z be solution of 4.3 and by Theorem 3.2 there x is unique solution of the problem

DyPYx(t) = f(t,x(t), Hz(t), te],
L. "x(a) = I, "z(a).

a+

Then we have

- 1t W
= iy (0O = 9@+ s [0 (00— ()" Fls,x(6), He(s)s.

By differentiating inequality (4.3), we have

#(0) = ey (W0 = 9(0) ™" = 5 [ 906 (000 = 90" £52(5), He(s))ds| < gl
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Hence it follows

|2(t) —x(8)] <

() = ity (00 = 9™ = iy [ 96 (000 = 90 s x(5), Ha())ds

14

<

< |z(t) - rfﬁo (¥(t) = 9(a)" " ~ r(l) /ﬂt P (s) ($(8) — ()" f(s,2(s), Hz(s))ds
i ’Hloc) / ¥'(s) ((t) — ()" " f(s,2(s), Hz(s))ds

1 E, a—
_F<a>/a P (s) () = (s)" " f(s,x(s), Hx(s))ds

< ap)+ S [ p0) = 96 ets) - 0] s

By Lemma 2.5, there exists a constant M* > 0 independent of A,¢(t) such that

|2(£) = x(£)] < M*Ae9(t) := Crpo(t).
Thus, Eq.(1.1) is generalized Ulam-Hyers-Rassias stable. O

Remark 4.9. (i) Under the assumption of Theorem 4.8, we consider (1.1) and the inequality
(4.2). One can repeat the same process to verify that Eq.(1.1) is Ulam-Hyers-Rassias
stable.

(ii) Under the assumption of Theorem 4.8, we consider (1.1) and the inequality (4.1). One
can repeat the same process to verify that Eq.(1.1) is Ulam-Hyers stable.
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